Fredholm determinant for higher dimensional piecewise linear transformations
نویسندگان
چکیده
منابع مشابه
Fredholm Determinant for Piecewise Linear Transformations
We call the number ξ the lower Lyapunov number. We will study Spec^) , the spectrum of P \BV> the restriction of P to the subspace BV of functions with bounded variation. The generating function of P is determined by the orbits of the division points of the partition, and the orbits are characterized by a finite dimensional matrix Φ(z) which is defined by a renewal equation (§ 3). Hence, we can...
متن کاملThe Fredholm determinant
Let H be a Hilbert space with an inner product that is conjugate linear in the first variable. We do not presume unless we say so that H is separable. We denote by B(H) the set of bounded linear operators H → H. For any A ∈ B(H), A∗A is positive and one proves that it has a unique positive square root |A| ∈ B(H). We call |A| the absolute value of A. We say that U ∈ B(H) is a partial isometry if...
متن کاملPiecewise Linear Two-Dimensional Warping
A new efficient dynamic programming (DP) algorithm for 2D elastic matching is proposed. The present DP algorithm requires by far less complexity than previous DPbased elastic matching algorithms. This complexity reduction results from piecewise linearization of a 2D-2D mapping which specifies an elastic matching between two given images. Since this linearization can be guided by a priori knowle...
متن کاملA Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملStronger Lasota-yorke Inequality for One-dimensional Piecewise Expanding Transformations
For a large class of piecewise expanding C1,1 maps of the interval we prove the Lasota-Yorke inequality with a constant smaller than the previously known 2/ inf |τ ′|. Consequently, the stability results of Keller-Liverani [7] apply to this class and in particular to maps with periodic turning points. One of the applications is the stability of acim’s for a class of W-shaped maps. Another appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japanese journal of mathematics. New series
سال: 1999
ISSN: 0289-2316,1861-3624
DOI: 10.4099/math1924.25.317